skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Zeng, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Varbanov, PS; Zeng, M; Wang, X; Wang, B (Ed.)
    While the treatment of wastewater is an important issue that received significant attention in the past decades, improving the related technologies is only one part of a more complex task. Domestic wastewater is usually transported via the city’s sewer system, and in many places, it is combined with rainwater. This means that disturbances, such as heavy rainfall or failures in the pipeline system, can lead to floods of polluted wastewater. Thus, it is important to design such transportation systems to be reliable. This work presents a methodology for generating several potential extensions to retrofit an existing water transportation network and increase its reliability. Reliability and feasibility evaluation is performed via the P-graph framework, after which the nondominated networks are collected. Results of the presented case study show that reliability can be increased 3 times by adding only some of the possible extensions to the network. The methodology proposed analysed 512 plausible retrofitting alternatives, from which 20 are non-dominated networks. This range of alternatives provides designers with insightful information to decrease water pollution and the vulnerability of wastewater systems. 
    more » « less
    Free, publicly-accessible full text available November 14, 2025